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A prohibition of equilibrium spin currents in multi-terminal ballistic devices

A. A. Kiselev⋆ and K. W. Kim
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911

We show that in the multi-terminal ballistic devices with intrinsic spin-orbit interaction connected
to normal metal contacts there are no equilibrium spin currents present at any given electron energy.
Obviously, this statement holds also after the integration over all occupied states. Based on the proof
of this fact, a number of scenarios involving nonequilibrium spin currents is identified and further
analyzed. In particular, it is shown that an arbitrary two-terminal device cannot polarize transient
current. The same is true for the output terminal of an N-terminal device when all N − 1 inputs
are connected in parallel.

PACS numbers: 73.63.-b; 72.25.-b

The results of Murakami et al.1 and Sinova et al.2

excited spintronic community by suggesting presence of
the dissipationless spin currents in electron/hole systems
with intrinsic spin-orbit (SO) interaction. A quick and
massive response by quite a few of the research teams
approached varied levels of generality and with mixed
conclusions.3

The matter was further highlighted by Rashba4 who
distilled the problem of equilibrium dissipationless spin
currents in a two-dimensional (2D) electron gas into an
unobscured puristic form of a paradox.

A similar phenomenology could potentially exist in
1D systems, especially in relation to the complex multi-
terminal ballistic devices. Rather obvious arguments
(see, e.g., Ref. 5), although, put a ban on the existence
of equilibrium spin currents in an ideal 1D wire with
parabolic dispersion and linear-in-k SO coupling. Never-
theless, for the 1D structures with static scatters, the op-
posite conclusions were recently announced6 (but, again,
their validity is now also questioned7).

In this Report we provide an unambiguous proof of
the fact that in multi-terminal ballistic devices equilib-
rium spin currents do not exist. This conclusion is uni-
versal and does not depend on the particular choice of
the electron Hamiltonian or the particular type of the
SO interaction.

We consider a ballistic device consisting of a struc-
ture of complex shape (for a simple example, some area,
“stamped out” from the two-dimensional electron gas)
that is connected to the exterior by a number of quasi-
1D wires (arms)—see Fig. 1 (a) for a visual guide.

To analyze the static linear-response conductances
of the multi-terminal ballistic device we apply the
Landauer-Büttiker formalism,8 that we have extended to
incorporate also spin-related phenomena.9,10 Following
closely these earlier publications, we now briefly intro-
duce relevant basic concepts.

A finite-size scattering matrix S,8

S =











r11 t12 · · · t1N

t21 r22 · · · t2N

...
...

. . .
...

tN1 tN2 · · · rNN











(1)

describes in a condensed form transmission and reflec-
tion properties of an arbitrarily complex linear (ballistic)
system connected to the exterior via 1D wires. It con-
sists of the (diagonal) reflection coefficients rii (in the
i-th channel) and (off-diagonal) transmission coefficients
tij (describing propagation of the particle from the j-th
into the i-th channel, i 6= j). For every electron energy we
choose to enumerate as distinguishable channels (and ter-
minals) all energetically allowed electron fluxes through
different 1D subbands (transverse modes), even in the
same wire. Thus, the number of the channels can differ
substantially from the number of the attached contacts.
Because of this fact, biases applied to different terminals
not always can be modulated independently. Since an
elementary electron flux F carried by a particular ideal
1D channel is defined by product of square of the elec-
tron plane wave amplitude ψ and the state group velocity
v = ∂H/∂k, it is a usual practice to define the scatter-
ing matrix in terms of the current amplitudes u =

√
vψ.

Thus, F ∝ u+u.
For a spinless particle, the coefficients rii, tij are

scalars. By taking electron spin into consideration, the
number of transmission channels effectively doubles. For
this discussion, we will assume that in the vicinity of the
normal metal contacts the channel asymmetry is either
not present or effectively screened by the metal. Thus,
the spin-dependent interactions are spatially limited to
the interior of the system, and the transport in the leads
through two degenerate spin subchannels is coherent and
requires some cautious treatment, especially when eval-
uating total channel fluxes and their polarization.

To incorporate into our formalism this spin-related
channel-doubling, we convert transmission and reflection
coefficients of the S into 2 × 2 submatrices. Each 2 × 2
submatrix x̂ (x̂ = r̂ii or t̂ij) in this case can be equiva-
lently expanded as

x̂ =

(

x↑↑ x↑↓
x↓↑ x↓↓

)

= 1̂x1 + i
∑

α

σ̂αxα , (2)

with a small additional benefit of conventional algebraic
manipulations with matrix objects. Here 1̂ is a unit 2 ×
2 matrix, σ̂α(α = x, y, z) are the usual Pauli matrices
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(↑ and ↓ utilized here are eigenstates of the operator σ̂z,
with axis z actually arbitrarily chosen).

In case of degenerate spin subchannels, an elementary
channel flux F ∝ û+û (input or output) is conveniently
given by the spinor column û = (u↑, u↓).

The relative magnitude and phase between u↑ and u↓
characterize orientation of the spin; vector P , defined by
three components Pα in the xyz coordinate system, is
called the polarization vector, PαF ∝ û+σ̂αû. For the
arbitrary spinor û the absolute value |P | = 1. When the
incident flux û is pumped into the channel j, the t̂ij û
part of it will seep through the structure into the i-th
output channel. In the general case of spin-dependent
interactions present in the system, t̂ij,α are potentially
non-zero and the spin will rotate from its original orien-
tation. Moreover, the magnitude of the transmitted flux
can, in principle, now depend on the spin orientation of
the incident flux.

Partially polarized electron fluxes can be mimicked by
a number of independent (not phase coherent) elemen-
tary fluxes ûq through the same channel that are just
additive in the case of our linear system

F =
∑

q

Fq, PF =
∑

q

(PF )q. (3)

To present the unpolarized input flux in channel j, one
can use, for example, two elementary fluxes û1 = (1, 0)
and û2 = (0, 1). Now it is very easy to evaluate F and P

for the electron flux, transmitted into channel i. Indeed,

F ∝ |tij,1|2 +
∑

α

|tij,α|2, (4)

with the α-component of spin polarization

PαF ∝ 2Im(tij,1t
∗
ij,α + t∗ij,α+1tij,α+2), (5)

where xyz indices are cyclically permuted.11

There are strict fundamental limitations on the com-
ponents of the scattering matrices. Hereafter we present
an adaptation of these limitations suitable for the devices
with the degenerate spin subchannels in the leads.10

With the total flux F ∝ U
+
U, the requirement of flux

conservation for Uout = SUin corresponding to an ar-
bitrary column Uin (symbolically representing coherent
incident plane waves ûi coming through all channels), can
only be guaranteed if

S
+
S = 1. (6)

For a broad class of problems, including the one with
intrinsic SO coupling, time-reversal invariance (with the

operator T̂ = −iσ̂yK where K is the complex conjuga-
tion) establishes the following relation on the scattering
matrix S

σ̂yS
∗σ̂yS = 1. (7)

This equation should be regarded as a symbolic one, with
the Pauli matrix multiplications applied to each subma-
trix r̂ii, t̂ij separately.

Combined with Eq. (6), this relation can be converted
into a more practical form σ̂yS

∗σ̂y = S
+, that immedi-

ately results in

rii,α = 0, tij,1 = tji,1, tij,α = −tji,α, (8)

Thus, the polarization of the back-reflected flux from un-
polarized source is not possible.12

Additional structure symmetry elements, when
present, could provide further restricting relations on the
components of S (see Ref. 10 for details). However, they
are not necessary for the further consideration.

With all relevant basic quantities and concepts already
introduced, it is now time to formulate and prove the fol-
lowing theorem: For an arbitrary multiterminal ballistic
device with intrinsic SO interaction that is connected to

the normal metal contacts the equilibrium electron flux
going out of the device through any particular terminal is

unpolarized, i.e.13

∑

j

(PF )ij ≡ 0. (9)

We start the proof of this theorem with Eq. (6) and
write out explicitly the ii-th matrix element of this equa-
tion

∑

j

(S+)ij(S)ji = 1̂ , (10)

with

(S+)ij = t̂+ji = 1̂t∗ji,1 − i
∑

α

σ̂αt
∗
ji,α .

After performing summation over i explicitly and collect-
ing terms with σ̂α on the l.h.s. of the equation (no such
terms present on the r.h.s.) we get

...+ iσ̂α

∑

j 6=i(t
∗
ji,1tji,α − t∗ji,αtji,1 (11)

+ t∗ji,α+1tji,α+2 − t∗ji,α+2tji,α+1) + ...

Making use of Eq. (8), the equation under the sign of
summation is exactly 2Im(tij,1t

∗
ij,α+t∗ij,α+1tij,α+2) which,

according to Eq. (5) is an α-polarized part of the flux
(PαF )ij going out of the device through terminal i, in-
duced by the unpolarized incident flux through terminal
j (and the incident electron fluxes are naturally unpolar-
ized in case of normal metal terminals). Thus, it turns
out that in order to satisfy the flux conservation condi-
tion of Eq. (6),

∑

j(PF )ij should be zero, that concludes
the proof.

Since this statement holds for any incident electron
energy Ekin independently, it holds, naturally, also after
integration over all occupied states.

When the infinitesimal biases are applied to termi-
nals, uncompensated nonequilibrium currents will flow
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through the device. In presence of SO interactions, these
currents can generally become polarized (like, for exam-
ple, it happens in the case of the T-shaped spin filter9).
However, there are situations, when, as a consequence of
the theorem proven above, these polarization processes
are fundamentally prohibited.

(i) Two-terminal device.—An arbitrary system with
just two connecting terminals [Fig. 1 b] cannot polar-
ize transmitted electron flux (this finding was earlier an-
nounced in Ref. 10; see also Ref. 14 for the discussion
of related phenomena). Indeed, the sum in Eq. (9) re-
duces in this case to a single term that is bound, by the
theorem, to be zero.

(ii) N -terminal device with N − 1 inputs connected in

parallel.—When all but one terminal are kept at the same
bias [Fig. 1 (c)], the output current through that last
terminal is unpolarized. Again, for the N -th terminal
we return exactly to the situation described by the theo-
rem. For a not-so-obvious example, let us consider some
ballistic device that is connected to the exterior by just
two physical wires, one of them supporting multi-channel
transport and another one allowing only a single prop-
agating mode (apart from spin degeneracy): current in
this second wire is always unpolarized.

In summary, we have formulated and proven a theo-
rem relating very general and fundamental properties of
a ballistic system (current conservation and the symme-
try in respect to the time inversion) with the ability of
this system to polarize transient currents. When all in-
put currents are supplied by unpolarized sources, each
and every output current is also unpolarized for the sys-
tem in equilibrium, i.e., no equilibrium spin currents are
allowed.
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FIG. 1. (a) N-terminal ballistic device with intrinsic SO
interaction (in shaded area). Arrows show direction of in-
put and output fluxes through connecting terminals; (b)
two-terminal device with bias applied; (c) N-terminal device
with N − 1 inputs connected in parallel.
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